A hybrid classifier for handwritten mathematical expression recognition
نویسندگان
چکیده
In this paper we propose a hybrid symbol classifier within a global framework for online handwritten mathematical expression recognition. The proposed architecture aims at handling mathematical expression recognition as a simultaneous optimization of symbol segmentation, symbol recognition, and 2D structure recognition under the restriction of a mathematical expression grammar. To improve the classifier in this architecture, we consider a two level classifier. A symbol classifier cooperates with a second classifier specialized to accept or reject a segmentation hypothesis. The proposed system is trained with a set of synthetic online handwritten mathematical expressions. When tested on a set of real complex expressions, the system achieves promising results at both symbol and expression interpretation levels.
منابع مشابه
Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملAn Investigation on the Performance of Hybrid Features for Feed Forward Neural Network Based English Handwritten Character Recognition System
Optical Characters Recognition (OCR) is one of the active subjects of research in the field of pattern recognition. The two main stages in the OCR system are feature extraction and classification. In this paper, a new hybrid feature extraction technique and a neural network classifier are proposed for off-line handwritten English character recognition system. The hybrid features are obtained by...
متن کاملRecognition of Handwritten Numerals Using a Combined Classifier with Hybrid Features
Off-line handwritten numeral recognition is a very difficult task. It is hard to achieve high recognition results using a single set of features and a single classifier, since handwritten numerals contain many pattern variations which mostly depend upon individual writing styles. In this paper, we propose a recognition system using hybrid features and a combined classifier. To improve recogniti...
متن کاملRecognition of Handwritten Mathematical Expressions
In recent years, the recognition of handwritten mathematical expressions has recieved an increasing amount of attention in pattern recognition research. The diversity of approaches to the problem and the lack of a commercially viable system, however, indicate that there is still much research to be done in this area. In this thesis, I will describe an on-line approach for converting a handwritt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010